ENGINEERING DEPARTMENT TECHNICAL REPORT TR-RE-CCSD-FO-1077-3 April 3, 1967 ### **SATURN IB PROGRAM** ## TEST REPORT FOR REFRIGERANT EXPANSION VALVE Alco Part Number TAC-22HW100 NASA Drawing Number 75MO4406 PTR-1 N 67-36389 (ACCESSION NUMBER) (PAGES) (PAGES) (CATEGORY) ### TEST REPORT FOR ### REFRIGERANT EXPANSION VALVE Alco Part Number TAC-22HW100 NASA Drawing Number 75M04406 PTR-1 ### ABSTRACT This report presents the results of tests performed on one specimen of Refrigerant Expansion Valve 75MO4406 PTR-1. The following tests were performed. - 1. Receiving Inspection - 3. Functional - 2. Proof Pressure - 4. Cycle The specimen performance was in accordance with the specification requirements of NASA Drawing 75MO4406 PTR-1 throughout the test program. ### FOREWORD The tests reported herein were conducted for the John F. Kennedy Space Center by Chrysler Corporation Space Division (CCSD), New Orleans, Louisiana. This document was prepared by CCSD under contract NAS 8-4016, Part VII, CWO 271620. TEST REPORT FOR REFRIGERANT EXPANSION VALVE Alco Part Number TAC-22HW100 NASA Drawing Number 75M04406 PTR-1 April 3, 1967 ### TABLE OF CONTENTS | Section | | Page | |---------|----------------------|------| | I | INTRODUCTION | 1-1 | | II | RECEIVING INSPECTION | 2-1 | | III | PROOF PRESSURE TEST | 3-1 | | IV | FUNCTIONAL TEST | 4-1 | | V | CYCLE TEST | 5-1 | ### LIST OF ILLUSTRATIONS | Figure | | Page | |----------------|---|--------------| | FRONTISPIECE . | | iv | | 3-1 | PROOF PRESSURE TEST SCHEMATIC | 3-5 | | 3-2 | PROOF PRESSURE TEST SETUP | 3-6 | | 4-1 | FUNCTIONAL AND CYCLE TEST SCHEMATIC | 4-9 | | 4-2 & 4-3 | FUNCTIONAL AND CYCLE TEST SETUP | 4-10
4-11 | | | LIST OF TABLES | | | <u>Table</u> | | Page | | 2-1 | SPECIMEN SPECIFICS | 2-1 | | 3-1 | PROOF PRESSURE TEST EQUIPMENT LIST | 3-3 | | 3-2 | PROOF PRESSURE AND LEAKAGE TEST DATA | 3-4 | | 4-1 | FUNCTIONAL TEST EQUIPMENT LIST | 4-6 | | 4-2 | RESULTS OF INITIAL FUNCTIONAL TEST | 4-8 | | 5-1 | CYCLE TEST EQUIPMENT LIST | 5-3 | | 5-2 | FUNCTIONAL TEST RESULTS AFTER 100 CYCLES | 5-7 | | 5-3 | FUNCTIONAL TEST RESULTS AFTER 500 CYCLES | 5-8 | | 5-4 | FUNCTIONAL TEST RESULTS AFTER 1000 CYCLES | 5-9 | | 5-5 | FUNCTIONAL TEST RESULTS AFTER 2000 CYCLES | 5-10 | | 5-6 | FUNCTIONAL TEST RESULTS AFTER 3000 CYCLES | 5-11 | | 5-7 | FUNCTIONAL TEST RESULTS AFTER 4000 CYCLES | 5-12 | | 5 -8 | FUNCTIONAL TEST RESULTS AFTER 5000 CYCLES | 5-13 | | 5_0 | REPRICERANT FLOW VERSUS HEAD PRESSURE | E 71 | ### CHECK SHEET ### FOR ### REFRIGERANT EXPANSION VALVE, 22-TON CAPACITY MANUFACTURER: Alco Valve Company and Johnson Service Company MANUFACTURER'S MODEL NUMBER: TAC-22HW100 NASA PART NUMBER: 75M04406 PTR-1 TESTING AGENCY: Chrysler Corporation Space Division, New Orleans, La. AUTHORIZING AGENCY: NASA-KSC ### I. FUNCTIONAL REQUIREMENTS OPERATING MEDIUM R-22 B. OPERATING PRESSURE: 1. HEAD -185 psig 2. SUCTION -55 psig C. PROOF PRESSURE: 1. INLET -450 psig 2. PNEUMATIC CONTROL INLET 25 psig D. VALVE CAPACITY: 22 tons of refrigeration ### II. CONSTRUCTION A. EQUALIZER: 1/4-inch SAE (Society of Automotive Engineers) male flare B. SIZE OF INLET AND OUTLET FITTINGS: 7/8-inch ODF (outer diameter female) and 1-1/8-inch ODM (outer diameter male) C. STYLE: Straight through flow D. REMOTE BULB TUBING LENGTH: 15 ft. E. MODULATING ATTACHMENT: Model V-306 ### III. ENVIRONMENTAL REQUIREMENTS A. EVAPORATOR TEMPERATURE RANGE: -40 to +50°F B. BULB TEMPERATURE: 34°F ### IV. LOCATION AND USE The valve controls refrigerant flow to the evaporator in the air conditioning units on Launch Complexes 34 and 37B at the John F. Kennedy Space Center. ### TEST SUMMARY ### REFRIGERANT EXPANSION VALVE ### 75M04406 PTR-1 | Environment | Units | Operational
Boundary | Test
Objective | Test
Results | Remarks | |---------------------------|-------|-----------------------------------|--|--------------------------------------|------------| | Receiving
Inspection | 1 | NASA drawing | Determine compliance with NASA and vendor drawings and examined for defects and poor workmanship | factory | | | Proof
Pressure
Test | 1 | let ports: 450 psig for 5 minutes | Check for leakage
Check for leakage | Satis-
factory Satis-
factory | No leakage | | Functional
Test | 1 | | Monitor valve operation at different modulator signal presures. Determine refrigerant flow throuthe valve. | factory
s- | | | Cycle Test | | completely | Determine if speci-
men performance is
impaired by cycling | Satis-
factory | ;
; | | | | | , | | | | | | | | | | ### SECTION II ### RECEIVING INSPECTION ### 2.1 TEST REQUIREMENTS 2.1.1 The specimen shall be visually and dimensionally inspected for conformance with NASA drawing 75M04406 PTR-1 and applicable specifications to the extent possible without disassembly of the test specimen. The specimen shall also be inspected for poor workmanship and manufacturing defects. ### 2.2 TEST PROCEDURE A visual and dimensional inspection of the test specimen was performed to determine compliances with NASA drawing 75MO4406 PTR-1 and the applicable vendor drawing to the extent possible without disassembly of the test specimen. At the same time the test specimen was also inspected for poor workmanship defects. ### 2.3 TEST RESULTS The specimen complied with NASA drawing 75M04406 PTR-1. No evidence of poor workmanship or manufacturing defects was observed. ### 2.4 TEST DATA 2.4.1 The data presented in table 2-1 were recorded during the inspection. Table 2-1. Specimen Specifics | Name | Expansion Valve | |-------------------------------|---| | Manufacturer | Alco Valve Company and
Johnson Service Company | | Model | TAC-22HW100
V-306 modulating attachment | | Capacity | 22-tons refrigeration | | Inlet and Outlet
Port Size | l-1/8-inches OD
7/8-inches ID | ### SECTION I ### INTRODUCTION ### 1.1 SCOPE This report presents the results of tests that were performed to determine if Refrigerant Expansion Valve 75M04406 PTR-1 meets the operational requirements for John F. Kennedy Space Center Launch Complexes 34 and 37B. A summary of the test results is presented on page vii. ### 1.2 ITEM DESCRIPTION - 1.2.1 One specimen of Refrigerant Expansion Valve 75M04406 PTR-1 was tested. The valve controls the flow of refrigerant to the evaporator in the air conditioning units on Launch Complexes 34 and 37B at the John F. Kennedy Space Center. - 1.2.2 Refrigerant Expansion Valve 75M04406 is a thermostatically controlled refrigerant valve, equipped with a pressure controlled modulator, and an external equalizer. The valve has a 22-ton refrigeration capacity. - 1.2.3 The valve is manufactured by the Alco Valve Company and is equipped with a Johnson Service Company modulating attachment. ### 1.3 APPLICABLE DOCUMENTS The following documents contain the test requirements for Refrigerant Expansion Valve 75MO4406 PTR-1. - a. 75M04406 PTR-1, Component Specification - b. KSC-STD-164(D), Environmental Test Methods - c. Test Plan CCSD-FO-1077-1F, Test Requirements - d. Test Procedure TP-RE-CCSD-F0-1077-2 ### SECTION III ### PROOF PRESSURE TEST | 3.1 | TEST REQUIREMENTS | |--------|--| | 3.1.1 | Pressurize the specimen inlet and outlet to 450 psig with $\rm GN_2$ and maintain the pressure for 5 minutes. Check for any leakage or distortion. | | 3.1.2 | Pressurize the pneumatic control inlet to 25 psig using ${\rm GN}_2$ and maintain the pressure for 5 minutes. Check for any leakage or distortion. | | 3.1.3 | The test specimen shall be depressurized to zero psig and inspected for distortion. | | 3.2 | TEST PROCEDURE | | 3.2.1 | The test setup was assembled as shown in figure 3-1 using the equipment listed in table 3-1. | | 3.2.2 | All connections were tight, gages were installed and operating properly and all valves were closed. | | 3.2.3 | Hand valves 3, 7, and 9 were opened. | | 3.2.4 | The inlet and outlet ports were pressurized to 450 psig using hand regulator 5. The pressure was monitored on gage 8. | | 3.2.5 | Hand valve 3 was closed. Pressure was maintained for 5 minutes and the specimen was checked for leakage and distortion. | | 3.2.6 | Regulator 5 was adjusted to zero outlet pressure. Specimen pressure was allowed to vent to zero through the regulator. | | 3.2.7 | Hand valves 7 and 9 were closed. Hand valve 3 was opened. | | 3.2.8 | Regulator 5 was adjusted to 25 psig outlet pressure. The pressure was monitored on gage 6. | | 3.2.9 | Hand valve 10 was cracked slightly allowing specimen modulator pressure indicated by gage 11 to reach 25 psig. | | 3.2.10 | Hand valves 10 and 3 were closed. Specimen modulator pressure was maintained for 5 minutes. The specimen was checked for leaks and distortion. | | 3.2.11 | Hand valve 10 was opened. Regulator 5 was adjusted to zero outlet pressure allowing modulator pressure to vent to zero through regulator 5. | 3.2.12 All data were recorded. ### 3.3 TEST RESULTS No specimen leakage was detected and there was no evidence of distortion. ### 3.4 TEST DATA The data presented in table 3.2 were recorded during the test. Table 3-1. Proof Pressure Test Equipment List | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|------------------------|---------------------------------|---------------------------|---------------|---| | 1 | Test Specimen | Alco and Johnson
Service Co. | TAC
22HW100 | NA | Thermostatic expansion valve 22-ton capacity | | 2 | GN ₂ Supply | Air Products | NA | NA | 4000-psig
bottle supply | | 3 | Hand Valve | Kerotest | NA | NA | ‡-inch | | 4 | Pressure Gage | Linde Co. | 23771-1 | NA | 0-to 4000-psig | | | | | | | +0.5% FS | | 5 | Regulator | Linde Co. | Type
8962 | NA | 0-tc 5000-psig
outlet | | 6 | Pressure Gage | Linde Co. | 23218-1 | NA | 0-to 3000-psig
±0.5% FS | | 7 | Hand Valve | Marotta | HVA-16 | 105 | l-inch | | 8 | Pressure Gage | Duragauge | NA | NA | 0-to 600-psig
+0.5% FS
Cal date
10/24/66 | | 9 | Hand Valve | Marotta | HVA-16 | 106 | l-inch | | 10 | Hand Valve | Robbins Aviation | NA | NA | ‡-inch | | 11 | Pressure Gage | Heise | 08-113-
9 3-187 | NA | 0-to 30-psig
+0.2% FS
Cal date
12/27/66 | | | | | | | | Table 3-2. Proof Pressure and Leakage Test Data | Pressure | 450 psig for 5 min (inlet and outlet ports) 25 psig for 5 min (modulator housing) | |------------|---| | Leakage | Zero | | Distortion | None | | | | Note: All lines \(\frac{1}{4} - \text{inch.} \) Refer to table 3-1 for item identification Figure 3-1. Proof Pressure Test Schematic Figure 3-2. Proof Pressure Test Setup ### SECTION IV ### FUNCTIONAL TEST | 4.1 | TEST REQUIREMENTS | |-------|--| | 4.1.1 | Manually adjust the expansion valve to control at a set point of 4°F superheat with a 20 psig signal pressure applied to the modulating attachment. | | 4.1.2 | Slowly decrease the modulator signal pressure (from the initial 20 psig) until the superheat begins to increase, thus indicating that the modulating attachment is beginning to overide the expansion valve. | | 4.1.3 | Continue to decrease the modulator signal pressure until the valve is in the closed position. Record this pressure also. | | 4.1.4 | Slowly increase the modulator signal pressure from 0 to 20 psig, recording both the point at which the valve begins to open and the point at which the valve is full open as signified by the superheat returning to a temperature of 4°F. | | 4.1.5 | Perform steps 4.1.2 thru 4.1.4 ten times initially and three times on all subsequent functional tests. | | 4.1.6 | Divide the refrigerant flow at 100 per cent capacity (as determined in steps 4.1.2, 4.1.3, and 4.1.4), into fourths to determine approximate signal pressures simulating system operating capacities of 100, 75, 50, and 25 per cent. | | 4.1.7 | Using signal pressures determined in step 4.1.6 suddenly fluctuate the signal pressure to the modulator causing the expansion valve to simulate changes in the system operating capacity from 100 to 75, 75 to 50, 50 to 25, 25 to 50, 50 to 75, and 75 to 100 per cent. | | 4.1.8 | Perform step 4.1.7 three times. | | 4.1.9 | During one functional determine the refrigerant flow through
the test specimen varying the head pressure from the lowest at-
tainable pressure to 200 psig while holding the suction pres-
sure constant at 55 psig. | | 4.2 | TEST PROCEDURE | | 4.2.1 | The specimen was installed in the functional test setup as shown in figure 4-1, using equipment listed in table 4-1. | | 4.2.2 | All connections were tight, gage were installed and operating properly and all hand valves were closed. | - 4.2.3 Temperature recorder 35, flow indicators 8 and 47 and preamplifier 52 were turned on. - 4.2.4 Hand valve 48 was opened, circulating pump 45 was turned on and the water/glycol flow was adjusted as required with bypass hand valve 44. The flow was monitored on flow indicator 47. - 4.2.5 Hand valves 24, 33, 9, 15, 18, 6, and 13, and solenoid valve 31 were opened. - 4.2.6 Hand regulator 26 was adjusted until 100 psig was indicated on gage 27. - 4.2.7 Hand regulators 28 and 30 were adjusted pressurizing the modulator until 20 psig was indicated on gage 34. - 4.2.8 Water flow through condenser 3 was adjusted to ensure proper operation. - 4.2.9 Compressor 2 was turned on and loaded as required for the test. - 4.2.10 The system was allowed to stabilize. Temperature recorder 35, R-22 flow indicator 8, and suction pressure gage 16 were monitored. Water/glycol temperature was controlled with temperature controller 41. - 4.2.11 The test specimen was adjusted to control at a set temperature of 4°F superheat with a 30°F bath. - 4.2.12 Using hand regulator 30 the modulator was slowly depressurized until there was a decrease in R-22 flow as indicated by flow indicator 8. This pressure was recorded. A rise in superheat followed this decreased refrigerant flow. - 4.2.13 The modulator was further depressurized with regulator 30 until zero flow was indicated by flow indicator 8. The pressure was recorded. The compressor suction pressure decreased eventually to zero when the specimen was completly closed. - Using regulator 30 the modulator was slowly pressurized until flow was indicated by flow indicator 8. This pressure was recorded. Suction pressure began to increase when the specimen opened. - Using regulator 30 the modulator was further pressurized until maximum flow was indicated by flow indicator 8. This pressure was recorded. The superheat returned to 4°F signifying that the specimen was full open. - 4.2.16 Procedures 4.2.12 thru 4.2.15 were performed ten times initially and three times on all subsequent functional tests. - 4.2.17 The refrigerant flow was divided into fourths. The signal pressure needed to attain these flow values were determined and recorded. - Using signal pressures determined in procedure 4.2.17, the signal pressures were suddenly varied with regulator 30 to cause the specimen to simulate changes in the system operating capacity from 100 to 75, 75 to 50, 50 to 25, 25 to 50, 50 to 75, and 75 to 100 per cent. - 4.2.19 Procedure 4.2.18 was performed three times. ### 4.3 TEST RESULTS 4.3.1 The test specimen demonstrated satisfactory performance during the initial functional test. The thermal bulb and the pressure controlled modulator were effective in controlling the refrigerant flow. ### 4.4 TEST DATA The data presented in table 4-2 were recorded during the initial functional test. Table 4-1. Functional Test Equipment List | Item | Item | Manufacturer | Model/ | Serial | Remarks | |------|----------------|------------------------------|-----------------|----------------------------------|--| | No. | | | Part No. | No. | | | 1 | Test Specimen | Alco and Johnson Service Co. | 22HW100 | NA
 | 22-tons
refrigeration | | 2 | Compressor | Airtemp | DWWOO | NA | 100-ton unit | | 3 | Condenser | Airtemp | NA | 4354 | 100-tons
refrigeration | | 4 | Dryer | NA | C-969 | | 2-core | | 5 | Sight Glass | Sporlan | 5-A-12 | | Built-in
moisture in-
dicator | | 6 | Hand Valve | Marotta | HVA-16 | 106 | l-inch | | 7 | Flowmeter | Waugh | FL-125B-1 | NASA 08-
113
106-
1030B | 3/4-inch
Cal date
10/14/66 | | 8 | Flow Indicator | Beckman | 5311 | NASA 08-
113
018771 | Preset E put
Cal date
2/1/61 | | 9 | Hand Valve | Robbins Aviation | SSKA 250-
4T | | ‡-inch | | 10 | Gage | Marsh | 100 - 4S | NASA 08-
113
95-1180-
B | 0-to 300-psig
+0.5% FS
Cal date
11/9/66 | | 11 | Thermocouple | Honeywell | "Т" Туре | NA | Cu-Con | | 12 | Capillary Tube | NA | NA | NA | NA | | 13 | Hand Valve | Marotta | HVA-16 | 105 | l-inch | | 14 | Evaporator | Airtemp | NA | E-204-
583 | 50-tons refrigeration | | 15 | Hand Valve | Robbins Aviation | SSKA-250
4T | NA | ‡-inch | | 16 | Gage | Marsh | NA NA | NASA
113 95-
1151 B | 0-to 200-psig
20.5% FS
Cal date 10/24/6 | Table 4-1. Functional Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|------------------------|------------------|---------------------------|---------------------------|--| | 17 | Thermoucouple | Honeywell | "T" Type | NA. | Cu-Con | | 18 | Hand Valve | NA | NA | NA | 1/4-inch | | 19 | Hand Valve | NA | NA | NA | l-inch | | 20 | Capillary Tube | NA NA | NA | NA | | | 21 | Expansion Valve | Sporlan | MVE-34 GJ | NA | 34-tons
refrigeration | | 22 | Hand Valve | NA | NA | NA | l-inch | | 23 | GN ₂ Supply | NA | NA | NA | 4000-psig
bottle supply | | 24 | Hand Valve | OXweld | NA | NA | ‡-inch | | 25 | Gage | Oxweld | NA | NA | 0-to 4000-psig
+5% FS | | 26 | Regulator | 0xweld | Туре
8962 | NA | O-to 5000-psig outlet | | 27 | Gage | 0xweld | BU2581
AQ 2377-
1-1 | NA | 0-to 4000-psig
<u>+</u> 5 % FS | | 28 | Pressure Regulator | Grove | 1 | L-41512 | 6000-psig inlet
0-to 750-psig
outlet | | 29 | Pressure Limiter | Republic | 680-ID2 | NA | 15 to 250-psig | | 30 | Pressure Regulator | Watts | M-119-3 | · NA | 450-psi inlet | | 31 | Solenoid Valve | Marotta | MV-74 | 17211 | 3-way, 28-v dc | | 32 | Pressure Limiter | Republic | 680-ID-2 | NA | 15 to 250-psig | | 33 | Hand Valve | Robbins Aviation | SSKA-250-
4& | NA | ‡-inch | | 34 | Pressure Gage | Heise | | NASA 08-
113
1087-C | 0-to 30-psig
+0.1% FS
Cal date
12/27/66 | Table 4-1. Functional Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|--------------------------|--------------|--------------------|----------------------------------|--| | 35 | Temperature
Recorder | Honeywell | NA
· | S470-421
1003 | Range: -125 to
+525°F
Cal date
10/11/66 | | 36 | Process Water
Supply | NA . | NA | NA | 80-psig | | 37 | Penn Flow Regulator | Penn | 1500 | CA-64 | 2-inch
150-psig | | 38 | Process Water
Return | NA | NA | NA | | | 39 | Hand Valve | Jenkins | Fig 47 | NA | l] -inch | | 40 | Water/glycol
solution | NA | NA | NA | 20°F freezing point | | 41 | Temperature
Controler | Honeywell | NA | NA | | | 42 | Pressure Actuated | Honeywell | 4805 | 768-
794037 | l-inch | | 43 | Steam Heater | NA | NA NA | NA | NA | | 44 | Hand Valve | Ohio Brass | 15C | NA | 2] -inch | | 45 | Water Pump | Novo | 17M2 | T4503 | Centrifugal
85-gpm | | 46 | Turbine Flowmeter | Cox | AN-24 | NASA 08-
113
200812-
15 | l½-inch
Cal date
2/3/67 | | 47 | Flow Indicator | Beckman | 5311 | NASA 08-
113
016578 | Cal date
12/29/66 | | 48 | Hand Valve | Williams | Fig 1254 | NA | l‡-inch | | 49 | Thermocouple | Honeywell | "Т" Туре | NA | Cu-Con | | 50 | Hand Valve | Williams | Fig 1254 | NA | 2-inch | Table 4-1. Functional Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|-----------------|-------------------|--------------------|-----------------------------------|--| | 51 | Thermocouple | Honeywell | "Т" Туре | NA | Cu-Con | | 52 | Preamplifier | Unholtz-Dickie | 8PMCV | NASA 08-
113
0215-97-
14 | Cal date
12/19/66 | | 53 | Pressure Gage | Ashcroft | Dura-
gauge | NASA 08-
113
1403 B | 0-to 200-psig
+0.5% FS
Cal date
9/22/66 | | 54 | Counter | Durant | NA | NA | 0-to 99,999 | | 55 | Pressure Switch | Barksdalve Valve | 402E | NA | Range: 5-to 80-
psig | | 56 | Power Supply | Laboratory Supply | NA | NA | 28-vdc | ## Table 4-2. Results of Initial Functional Test Note: The following conditions were recorded at the beginning of the functional test. | T ₁ (°F) | T ₂ (°F) | T ₃ (°F) | T4 (°F) | Flow H20/
Glycol (gpm) | Flow R-22
(gpm) | R-22 Head Pressure (psig) | R-22 Suction
Pressure (psig) | Modulator Si
Press. (psig | |---------------------|---------------------|---------------------|---------|---------------------------|--------------------|---------------------------|---------------------------------|------------------------------| | 34 | 95 | 33 | 77 | 36.9 | 2.7 | 197 | 56 | 50 | | T ₁ - Water/glycol evaporator exit temperature. | Dofut gonot ton | Mod::1-0 | |---|-----------------|------------------------------| | T2 - Refrigerant temperature upstream from test specimen. | Capacity (%) | Capacity (%) Signal Pressure | | $\mathbb{T}_{oldsymbol{3}}$ - Temperature of gaseous refrigerant on suction line. | | (DSIR) | | \mathtt{T}_{L} - Water/glycol evaporator inlet temperature. | 100 | 9.1 | | | 75 | 70.5 | | | | | *************************************** | | |-----|------|-----|---|--| | 9.1 | 10.5 | 8.6 | 9.2 | | | 100 | 75 | 20 | 25 | | | | 1.00 | | | | | Modulator Signal Pres Begin Close (psig) 2) 8.8 3) 8.8 4) 8.8 5) 8.9 6) 8.9 7) 8.9 8) 8.9 9) 8.8 | Pressures at Various Valve Positions Completely Closed Begin Oy 7.0 | ve Positions Begin Open (psig) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | Full Open (psig) 9.0 9.0 9.0 9.0 9.0 9.2 9.2 9.2 | |--|--|---|--| | | 0.7 | 7.0 | 9.5 | Figure 4-1. Functional and Cycle Test Schematic Figure 4-2. Functional And Cycle Test Setup ### SECTION V ### CYCLE TEST | 5.1 | TEST REQUIREMENTS | |-------|---| | 5.1.1 | Cycle valve from full open to closed position. Conduct 5000 cycles and perform a functional test after 100, 500, 1000 and each additional 1000 cycles thereafter. | | 5.1.2 | Record all adjustments necessary during functional testing. | | 5.1.3 | The test is to be performed with R-22 as the test medium. | | 5.2 | TEST PROCEDURE | | 5.2.1 | The specimen was installed in the existing refrigeration system as shown in figure 4-1 using the equipment listed in table 5-1. | | 5.2.2 | All connections were tight, gages were installed and operating properly and all hand valves were closed. | | 5.2.3 | Hand valves 24 and 33, and solenoid valve 31 were opened. Pressure switch 55 was bypassed. | | 5.2.4 | Regulator 26 was adjusted until 100 psig was indicated on gage 27. | | 5.2.5 | Regulators 28 and 30 were adjusted until 20 psig was indicated on gage 34. | | 5.2.6 | Pressure switch 55 was connected and actuate and deactuate pressures were adjusted to correspond with full open and full closed position of the valve. | | 5.2.7 | A functional test was performed as outlined in Section IV at 100, 500, 1000 and each 1000 cycles thereafter. A total of 5000 cycles were performed. | | 5.2.8 | During one functional test the thermal bulb was disconnected from the suction line and secured so that it remained at constant room ambient temperature. Using penn regulator 37, the compressor head pressure was varied from the lowest attainable pressure to 200 psig in 10 psig increments. The refrigerant flow for each increment was recorded while the suction pressure was held constant at 63 psig. A suction pressure of 55 psig could not be maintained. | | 5.3 | TEST RESULTS | | | The specimen exhibited no degradation of performance as a result of the cycle test. The required functional tests were performed as outlined in Section IV and the data were obtained | under conditions explained in paragraph 4.3. ### 5.4 TEST DATA The data obtained during the functional tests are presented in tables 5-2 thru 5-8. Flow test data are presented in table 5-9. Table 5-1. Cycle Test Equipment List | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|----------------|---------------------------------|--------------------|----------------------------------|---------------------------------------| | 1 | Test Specimen | Alco and Johnson
Service Co. | 22HW100 | NA | 22-tons
refrigeration | | 2 | Compressor | Airtemp | DWWCO | NA | 100-ton unit | | 3 | Condenser | Airtemp | NA | 4354 | 100-tons
refrigeration | | - 4 | Dryer | NA | C-969 | | 2-Core | | .5 | Sight Glass | Sporlan | 5-A-12 | | Built-in
moisture in-
dicator | | 6 | Hand Valve | Marotta | HVA-16 | 106 | 1-inch | | 7 | Flowmeter | Waugh | FL-125B-1 | NASA 08-
113
106-
1030B | 3/4-inch
Cal date
10/14/66 | | 8 | Flow Indicator | Beckman | 5311 | NASA 08-
113
018771 | Preset E put
Cal date
2/1/61 | | 9 | Hand Valve | Robbins Aviation | SSKA 250- | | 1 -inch | | 10 | Gage | Marsh | 100-45 | NASA 08-
113
95-1180-
B | +0.5% FS | | 11 | Thermocouple | Honeywell | "Т" Туре | NA | Cu-Con | | 12 | Capillary Tube | NA . | NA | NA | NA | | 13 | Hand Valve | Marotta | HVA-16 | 105 | l-inch | | 14 | Evaporator | Airtemp | NA | E-204-
583 | 50-tons
refrigeration | | 15 | Hand Valve | Robbins Aviation | SSKA-250
4T | NA | l -inch | | 16 | Gage | Marsh | NA | NASA
113 95-
1151 B | 0-to 200-psig
Cal date
10/24/66 | Table 5-1. Cycle Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|------------------------|------------------|---------------------------|---------------------------|--| | 17 | Thermoucouple | Honeywell | "T" Type | NA | Cu-Con | | 18 | Hand Valve | NA | NA | NA | t-inch | | 19 | Hand Valve | NA | NA | NA | ‡-inch | | .20 | Capillary Tube | NA | NA | NA | | | 21 | Expansion Valve | Sporlan | MVE-34 GJ | NA | 34-tons
refrigeration | | 22 | Hand Valve | NA | NA | NA | 1-inch | | 23 | GN ₂ Supply | NA | NA | NA | 4000-psig
bottle supply | | 24 | Hand Valve | OXweld | NA | NA | t-inch | | 25 | Gage | Oxweld | NA | NA . | 0-to 4000-psig
±5% FS
Cal date | | 26 | Regulator | Oxweld | Type
8962 | NA | O-to 5000-psig
outlet | | 27 | Gage | Oxweld | BU2581
AQ 2377-
1-1 | NA | 0-to 4000-psig
±5% FS | | 28 | Pressure Regulator | Grove | | L-41512 | 6000-psig inlet
0-to 750-psig
outlet | | 29 | Pressure Limiter | Republic | 680-ID2 | NA | 15 to 250-psig | | 30 | Pressure Regulator | Watts | M-119-3 | NA | 450-psi inlet | | 31 | Solenoid Valve | Marotta ' | MV-74 | 17211 | 3-way, 28-v dc | | 32 | Pressure Limiter | Republic | 680-ID-2 | NA | 15 to 250-psig | | 33 | Hand Valve | Robbins Aviation | SSKA-250-
4& | NA | ‡-inch | | 34 | Pressure Gage | Heise | н41917 | NASA 08-
113
1087-C | 0-to 30-psig
+0.1% FS
Cal date
12/27/66 | Table 5-1. Cycle Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Model/
Part No. | Serial
No. | Remarks | |-------------|---------------------------------|--------------|--------------------|----------------------------------|--| | 35. | Temperature
Recorder | Honeywell | NA | 5470-421
1003 | Range: -125 to
+525°F
Cal date
10/11/66 | | 36 | Process Water
Supp ly | NA | NA | NA | 80-psig | | 37 | Penn Flow Regulator | Penn | 1500 | CA-64 | 2-inch
150-psig | | - | Process Water
Return | AA | NA | NA | | | 39 | Hand Valve | Jenkins | Fig 47 | NA | 1½-inch | | 40 | Water/glycol
solution | NA | NA | NA | 20°F freezing point | | 41 | Temperature
Controler | Honeywell | NA | AN | | | 42 | Pressure Actuated Valve | Honeywell | 4805 | 768-
794037 | l-inch | | 43 | Steam Heater | NA | NA | NA | NA | | 44 | Hand Valve, | Ohio Brass | 15C | NA | 22-inch | | 45 | Water Pump | Novo | 17M2 | T 4503 | Centrifugal
85-gpm | | 46 | Turbine Flowmeter | Cox | AN-24 | NASA 08-
113
200812-
15 | la-inch
Cal date
2/3/67 | | 47 | Flow Indicator | Beckman | 5311 | NASA 08-
113
016578 | Cal date
12/29/66 | | 48 | Hand Valve | Williams | Fig 1254 | NA | l‡-inch | | 49 | Thermocouple | Honeywell | "Т" Туре | NA | Cu-Con | | 50 | Hand Valve | Williams . | Fig 1254 | NA | 2-inch | Table 5-1. Cycle Test Equipment List (Continued) | Item
No. | Item | Manufacturer | Modei/
Part No. | Serial
No. | Remarks | |-------------|-----------------|-------------------|--------------------|-----------------------------------|--| | 51 | Thermocouple | Honeywell | "T" Type | NA | Cu-Con | | 52 | Preamplifier | Unholtz-Dickie | 8PMCV | NASA 08-
113
0215-97-
14 | Cal date
12/19/66 | | 53 | Pressure Gage | Asheroft | Dura-
gauge | NASA 08-
113
1403 B | 0-to 200-psig
+0.5% FS
Cal date
9/22/66 | | 54 | Counter | Durant | NA | NA | 0-to 99,999 | | 55 | Pressure Switch | Barksdalve Valve | 402E | NA | Range: 5-to 80-
psig | | _ 56 | Power Supply | Laboratory Supply | NA | NA | 28-vdc | Table 5-2. Functional Test Results After 100 Cycles Note: The following conditions were recorded at the beginning of the functional test. | 97 30 45 25.5 3.1 190 57 20 | oF) | T ₁ (°F) T ₂ (°F) | T ₃ (°F) | T4 (°F) | T ₃ (°F) T ₄ (°F) Flow H ₂ O/
Glycol (gpm) | Flow R-22
(gpm) | R-22 Head Pressure
(psig) | R-22 Suction
Pressure (psig) | Modulator Sig
Press. (psig) | |-----------------------------|-----|---|---------------------|---------|--|--------------------|------------------------------|---------------------------------|--------------------------------| | | | 26 | 38 | 4.5 | 25.5 | 3.1 | 190 | 57 | 50 | | | efrigeration Modulator
Capacity (%) Signal Pressure
(psig) | 10.9 | 10.5 | 8.6 | 9.5 | | |--|--|--|--|-----|-----|--| | | Refrigeration
Capacity (%) | 100 | 75 | 50 | 25 | | | "1 - Water/glycol evaporator exit temperature. | T2 - Refrigerant temperature upstream from test specimen. | ig - Tomporature of gaseous refragarent en suction like. | T_L - Water/glycol evaporator inlet temperature. | | | | | Modu | lator Signal Pre | Modulator Signal Pressures at Various Valve Positions | We Positions | | |------|------------------|---|--------------|-----------| | | Begin Close | Completely Closed | Begin Open | Full Open | | 11 | 1) 10.9 | 7.8 | 7.8 | (psig) | | 2) | 2) 10.9 | 7.8 | 7.8 | 7.11 | | 3) | 3) 10.9 | 7.8 | 7.8 | 11.5 | • • | | | # Table 5-3. Functional Test Results After 500 Cycles Note: The following conditions were recorded at the beginning of the functional test. | T ₁ (°F) | T ₂ (°F) | T ₃ (°F) | T4 (°F) | Flow H20/
Glycol (gpm) | Flow R-22
(gpm) | R-22 Head Pressure (psig) | R-22 Suction
Pressure (psig) | Modulator Si
Press. (psig | |---------------------|---------------------|---------------------|---------|---------------------------|--------------------|---------------------------|---------------------------------|------------------------------| | 36 | 92 | 33 | 45 | 25.7 | 3.1 | 180 | 57.5 | 8 | | | | • | | | | | | | | temperature. | |--------------| | exit | | evaporator | | /glycol | | - Water/ | | Ę | T2 - Refrigerant temperature upstream from test specimen. T3 - Temperature of gasecus refrigerent an suction line. T_{4} - Water/glycol evaporator inlet temperature. | Modulator
Signal Pressure
(psig) | 11.2 | 10.1 | 9.3 | 7.6 | | |--|------|------|-----|-----|--| | Refrigeration
Capacity (%) | 100 | 22 | 50 | 25 | | Modulator Signal Pressures at Various Valve Positions | (psig) (psig)
6.5 6.5
6.5 6.5
11.7
6.5 6.5 | Begin Close | Begin Close Completely Closed Begin Or | Begin Open | Full Open | |--|-------------|--|------------|-----------| | 6.5 6.5 6.5 6.5 | (psig) | (psig) | (psig) | (psig) | | 6.5 6.5 | 1) 11.2 | 6.5 | 6.5 | 7.11 | | 6.5 | 2) 11.2 | 6.5 | 6.5 | 11.7 | | | 3) 11.2 | 6.5 | 6.5 | 11.7 | • | | | | Table 5-4. Functional Test Results After 1000 Cycles Note: The following conditions were recorded at the beginning of the functional test. | R-22 Suction Modulator Sif. Pressure (psig) | | | Modulator
Signal Pressure | (psig) | 11.5 | 10.5 | 10.2 | 9.1 | | | | <i>:</i> | | | |---|---------|--|---------------------------------------|---|---|------|------|-----|---------------------------|------------------------|-----------|----------|-------|--| | R-22 Head Pressure Property (Psig) | 180 | | Refrigeration M
Capacity (%) Sign | 7 | 100 | 75 | 50 | 25 | | Full Open (psig) | 11.9 | 11.5 | 11.5 | | | Flow R-22 F (gpm) | 4.1 | ure. | from test specimen. | suction line. | ture. | | | | Valve Positions | Begin Open
(psig) | 9.5 | 9.5 | 9.5 | | | PF) Flow H2O/
Glycol (gpm) | 44 25.5 | T ₁ - Water/glycol evaporator exit temperature. | | Temperature of gaseous refrigerant on suction line. | T4 - Water/glycol evaporator inlet temperature. | | | | Pressures at Various Valu | | 9.5 | 9.5 | . 9.5 | | | T ₃ (°F) T ₄ (°F) | 30 4 | ater/glycol evapor | T2 - Refrigerant temperature upstream | emperature of gase | ater/glycol evapor | | | | Modulator Signal Pressur | Begin Close (c) (psig) | 11.5 | 11.5 | n.5 | | | T ₂ (°F) | 85 | T1 - W | T2 - Re | | T4 - We | | | | Modula | Be | 1 (1
— | 2) 1 | 3) 17 | | # Table 5-5. Functional Test Results After 2000 Cycles Note: The following conditions were recorded at the beginning of the functional test. | | | | | | · | | | | |---------------------|---------------------|---------|---------|--|--------------------|---------------------------|---------------------------------|------------------------------| | T ₁ (°F) | T ₂ (°F) | Т3 (°F) | T4 (°F) | Flow H ₂ O/
Glycol (gpm) | Flow R-22
(gpm) | R-22 Head Pressure (psig) | R-22 Suction
Pressure (psig) | Modulator Si
Press. (psig | | | | _ | | | | | | r-2 | | 35 | 8 | 32 | 45 | 25.1 | 3.2 | 187 | 58 | 8 | | | | | | ¥ | | | | | | | Refrigeration Modulator
Capacity (%) Signal Pressure | (psig) | 100 9.6 | 75 9.3 | |---|--|--|---------|---| | T_1 - Water/glycol evaporator exit temperature. | $ extsf{T}_2$ - Refrigerant temperature upstream from test specimen. | 73 - Temporature of gareens refrigerant on suction line. | | 14 - Waver/Blycol evaporator inlet temperature. | | | | | 90 | 8.9 | |-----------------------|---|----------------------|------------------|------| | | | | 25 | 8.3 | | | | | | | | Modulator Signal Pr | Modulator Signal Pressures at Various Valve Positions | ve Positions | | | | Begin Close
(psig) | Completely Closed (psig) | Begin Open
(psig) | Full Open (psig) | Open | | | | | | 70 | | 1) 9.5 | 8.3 | 8.3 | 10.1 | | | 2) 9.5 | 8.3 | 8.3 | 10.1 | | | 3) 9.5 | . 8.3 | 8.3 | 10.1 | - | | • | | Table 5-6. Functional Test Results After 3000 Cycles Note: The following conditions were recorded at the beginning of the functional test. | T ₁ (°F) | T ₁ (°F) T ₂ (°F) | T ₃ (°F) T ₄ (°F) Flow H ₂ O/(E | T4 (°F) | Flow H2O/
Glycol (gpm) | Flow R-22
(gpm) | R-22 Head Pressure
(psig) | R-22 Suction
Pressure (psig) | Modulator Sig
Press. (psig) | |---------------------|---|--|-----------|--|--------------------|------------------------------|---------------------------------|--------------------------------| | 35 | 8 | 30 | 1 | 25.0 | 3.5 | 183 | 55 | 8 | | | Tl - Wat | ter/glycol | evaporato | $\mathbf{T_1}$ - Water/glycol evaporator exit temperature. | ture. | | | | | T ₁ - Water/glycol evaporator exit temperature. | | | | |--|-------------------------------|---|---| | T2 - Refrigerant temperature upstream from test specimen. | Refrigeration
Capacity (%) | efrigeration Modulator Capacity (%) Signal Pressure (nsign) | | | T3 - Temperature of gaseous refrigerant on sustion line. | 100 | 12.0 | • | | $\mathtt{T}_{m{4}}$ - Water/glycol evaporator inlet temperature. | 75 | 11:2 | • | | | 50 | 7.01 | | | • | 25 | 6.6 | | | | | | | | Modulator Signal Pre | Modulator Signal Pressures at Various Valve Positions | lve Positions | | |-----------------------|---|----------------------|------------------| | Begin Close
(psig) | Completely Closed (psig) | Begin Open
(psig) | Full Open (psig) | | 1) 11.7 | 6.6 | 6.6 | 12.0 | | 2) 11.6 | 6.6 | 6.6 | 12.0 | | 3) 11.6 | 6.6 | 6.6 | 12.0 | | | | | | | | | | | | | | | | | • | | | | Table 5-7. Functional Test Results After 4000 Cycles Note: The following conditions were recorded at the beginning of the functional test. | જ્ઞ | 55 | OST | 7.0 | | | | | | |--------------|-----------------|--------------------|-------|--------------|---------|---------|---|---------| | 6 | น | 781 | 3.1 | 25.1 | 77 | 3 | 85 | 35 | | Press. (psig | Pressure (psig) | (psig) | (mdg) | Glycol (gpm) | 7, 7, | 13 (1) | 72 7 77 | | | Modulator Si | | R-22 Head Pressure | .22 | Flow H20/ | T, (oF) | T2 (0F) | Γ_{2} ($^{\circ}\overline{F}$) | T, (oF) | | | | | - | , , , | - | | | | | | Refrigeration
Capacity (%) | 100 | 75 | |--|---|--|--| | T ₁ - Water/glycol evaporator exit temperature. | T2 - Refrigerant temperature upstream from test specimen. | Ty - Temperature of gascous refrigerant on suction line. | $\mathtt{T}_{m{\mu}}$ - Water/glycol evaporator inlet temperature. | | Refrigeration
Capacity (%) | Modulator
Signal Pressure
(psig) | |-------------------------------|--| | 100 | 11.9 | | 75 | 11.1 | | 20 | 10.5 | | 25 | 6.7 | | | | | Modulator Signal Fr | rressures at Various Valve Positions | lve Positions | | |---------------------------|--------------------------------------|---------------|-----------| | Begin Close (psig) | Completely Closed (psip) | Begin Open | Full Open | | 1) 11.5 | 7.2 | 7.2 | 11.9 | | 2) 11.5 | 7.2 | 7.2 | п.9 | | 3) 11.5 | 7.2 | 7.2 | 11.9 | | | | | | | | | | | | ************************* | | | | | | | | | Table 5-8. Functional Test Results After 5000 Cycles Note: The following conditions were recorded at the beginning of the functional test. | • | tion Modulator Signates (neighboring) | | 23 | ıre | 1 | | P-17 - P-1-1-1-1-1 | . · | | | | - | | | | |---|---------------------------------------|------|---|---|---|--|--------------------|-----|-----|--|-----------------------|--------|--------|--------|--| | | Pressure (psig) | 55 | | Modulator
Signal Pressure | (psig) | 10.0 | 7.6 | 9.8 | 6.5 | | 11 Open
(psig) | | | | | | | R-22 Head Pressure (psig) | 186 | | Refrigeration
Capacity (%) | | 100 | 52 | 50 | 25 | | hull Open (psig) | 10.0 | 10.0 | 10.0 | | | | Flow R-22 (gpm) | 31 | ou ii. | T2 - Refrigerant temperature upstream from test specimen. | om stackion line. | ature. | | | | Valve Positions | | 6.1 | 6.1 | 6.1 | | | | Flow H20/
Glycol (gpm) | 25.1 | T1 - Water/glycol evaporator exit temmenstume | re upstream from | T3 - Temperature of gaseous refrigerant w | $\mathtt{T}_{oldsymbol{4}}$ - Water/glycol evaporator inlet temperature. | · | | | Modulator Signal Pressures at Various Va | 10) 1 | 6.1 | 6.1 | 6.1 | | | | T4 (°F) | 45 | vaporat | mperatu | gaseous | vaporate | | | | ressures | Comp | | | | | | | r_3 (of) r_4 (of) | 31 | er/glycol e | rigerant te | perature of | er/glycol e | | | | or Signal Pa | Begin Close
(psig) | | · | | | | | T ₂ (°F) | 85 | T, - Wat | T ₂ - Ref | T3 - Tem | T4 - Wat | | | | Modulat | Beg | 1) 9.5 | 2) 9.5 | 3) 9.5 | | | | 1 (°F) | 35 | | | | | 5 | -13 | | · | | | | | | ### Note The following data were obtained by maintaining a constant 63 psig suction pressure at the exit of the evaporator. Head pressure was varied from 150 to 200 psig. Table 5-9. Refrigerant Flow Versus Head Pressure | Head Pressure (psig) | R-22 Flow (gpm) | |----------------------|-----------------| | 150 | 4.7 | | 159 | 4.9 | | 170 | 5.0 | | 180 | 5.0 | | 188 | 5.1 | | 200 | 5.5 | | | | ### APPROVAL ### TEST REPORT FOR ### REFRIGERANT EXPANSION VALVE Alco Part Number TAC-22HW100 NASA Drawing Number 75M04406 PTR-1 SUBMITTED BY: Test and Evaluation Section **APPROVALS** W. Claunch Program Supervisor V. J. Vehko Director, Engineering Department ### DISTRIBUTION ### Chrysler Corporation Space Division | C. A. Brakebill | Test and Evaluation Section | 2 | | | | | |---|--|------------------|--|--|--|--| | R. W. Claunch | Program Supervisor, CCSD-Michoud | 2 | | | | | | W. E. Dempster | Program Manager, CCSD-FO | 6 | | | | | | E. J. Dofter | Chief Engineer, Reliability Engineering Branch | 1 | | | | | | L. L. Gray | Test and Evaluation Section | 5 | | | | | | P. Perani | Manager, Test and Evaluation Section | 2 | | | | | | L. T. Scherer, Jr. | Manager, Data Center Section | 1 | | | | | | V. J. Vehko | Director, Engineering Department | 1 | | | | | | Technical Files Technical Information Centre Technical Writing and Editing Group National Aeronautics and Space Administration | | | | | | | | Marshall Space Flight Cent MS-IP, Bldg. 4200 APIC John F. Kennedy Space Cent MD MG MH | | 3
1
1
1 | | | | | | ML, Mr. Fedor
RC-423
Scientific and Technical I
P.O. Box 33 | nformation Facility | 1
5 | | | | | | College Park, Maryland 207 | 40 | 2 | | | | |